
For the past 150 years, economic theory 
has viewed agents in the economy (firms, 
consumers, investors) as perfectly rational 
decision makers facing well-​defined 
problems and arriving at optimal behavior 
consistent with — in equilibrium with —  
the outcome caused by this behaviour. This 
view has brought much insight. But many 
economists1–7 have pointed out that it is 
based partly on assumptions chosen for 
mathematical convenience and, over the 
years, have raised doubts about whether it 
is universally applicable. Since the 1990s, 
economists have instead begun exploring 
the economy as an evolving complex system, 
and out of this exploration has come a 
different approach — complexity economics.

Complexity economics sees the 
economy — or the parts of it that interest 
us — as not necessarily in equilibrium, its 
decision makers (or agents) as not super- 
rational, the problems they face as not 
necessarily well-​defined and the economy 
not as a perfectly humming machine but 
as an ever-​changing ecology of beliefs, 
organizing principles and behaviours. 
The approach, which has now spread 
throughout the economics profession, 
got its start largely at the Santa Fe Institute 
(SFI) in the late 1980s. But the basic ideas of 
complexity economics have an even longer 
history in economics. Even before Adam 

I will give a personal account of how this 
economics was arrived at, based on my 
own experiences. I will also not attempt to 
survey the hundreds of studies now in the 
field. Rather, I will discuss how complexity 
economics came to be, what logic it is based 
on, what its major themes are and how it 
links with complexity and physics. I will 
talk about ideas rather than technicalities, 
and build from earlier essays of myself and 
others12–21 to illustrate the key points, noting 
that this approach has variants22,23 and 
forerunners24,25, and it owes much to earlier 
work by Thorsten Veblen1, Herbert Simon2 
and Friedrich Hayek26.

The logic of the approach
Standard economics and fundamental 
uncertainty. Standard economics, called 
neoclassical economics, studies how 
outcomes form in the economy from agents’ 
behaviour, and, to do so, it chooses to make 
several standard assumptions:
•	 Perfect rationality. It assumes agents each 

solve a well-​defined problem using perfectly 
rational logic to optimize their behaviour.

•	Representative agents. It assumes, 
typically, that agents are the same as  
each other — they are ‘representative’ — 
and fall into one or a small number  
(or distribution) of representative types.

•	Common knowledge. It assumes all 
agents have exact knowledge of these 
agent types, that other agents are 
perfectly rational and that they too  
share this common knowledge.

•	 Equilibrium. It assumes that the 
aggregate outcome is consistent with 
agent behaviour — it gives no incentive 
for agents to change their actions.
These assumptions are by no means 

perfectly rigid but they constitute an 
accepted norm. They are made not because 
theorists necessarily believe they are true, 
but because they greatly simplify analysis.

The equilibrium assumption in particular 
is basic to neoclassical theorizing. General 
equilibrium theory asks what prices and 
quantities of goods consumed and produced 
would be consistent with (in equilibrium 
with) the overall pattern of prices and 
quantities in the economy’s markets — that 
is, would pose no incentives for those overall 
patterns to change. Classical game theory 
asks what strategies or moves of one player 

Smith, economists noted that aggregate 
outcomes in the economy, such as patterns 
of trade, market prices and quantities of 
goods produced and consumed, form 
from individual behaviour, and individual 
behaviour, in turn, reacts to these aggregate 
outcomes. There is a recursive loop.

It is this recursive loop that makes the 
economy a complex system. Complexity, 
the overall subject8–11, as I see it is not 
a science, rather it is a movement within 
science, and it has roots in thinking developed 
in the 1970s in Brussels, Ann Arbor and 
Stuttgart. It studies how elements interacting 
in a system create overall patterns, and how 
these patterns, in turn, cause the elements to 
change or adapt in response. The elements 
might be cells in a cellular automaton, or cars 
in traffic, or biological cells in an immune 
system, and they may react to neighbouring 
cells’ states, or adjacent cars, or concentrations 
of B and T cells. Whichever the case, 
complexity asks how individual elements 
react to the current pattern they mutually 
create, and what patterns, in turn, result.

The economics I will describe here 
drops the assumptions of equilibrium and 
rationality. But it did not come from an 
attempt to discard standard assumptions, 
rather it came from a pathway of thinking 
about how the economy actually works. 
So instead of giving a formal description, 
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Abstract | Conventional, neoclassical economics assumes perfectly rational agents 
(firms, consumers, investors) who face well-​defined problems and arrive at optimal 
behaviour consistent with — in equilibrium with — the overall outcome caused by 
this behaviour. This rational, equilibrium system produces an elegant economics, 
but is restrictive and often unrealistic. Complexity economics relaxes these 
assumptions. It assumes that agents differ, that they have imperfect information 
about other agents and must, therefore, try to make sense of the situation they 
face. Agents explore, react and constantly change their actions and strategies in 
response to the outcome they mutually create. The resulting outcome may not be 
in equilibrium and may display patterns and emergent phenomena not visible to 
equilibrium analysis. The economy becomes something not given and existing but 
constantly forming from a developing set of actions, strategies and beliefs — 
something not mechanistic, static, timeless and perfect but organic, always 
creating itself, alive and full of messy vitality.
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would be consistent with the strategies or 
moves their rivals might choose — that is, 
would be the best course of action for that 
player. Rational expectations economics 
asks what forecasting methods would 
be consistent with the outcomes these 
forecasting methods brought about —  
that is, would statistically, on average, 
be validated by outcomes.

Overall, this equilibrium approach has 
worked quite well. It is a natural way to 
examine questions in the economy and 
open these up to mathematical analysis, 
and it illuminates a wide range of issues 
in economics. I admire its elegance; it has 
yielded, in Paul Samuelson’s words27, an 
“austere aesthetic grace.” But it severely 
limits what can be seen. By its definition, 
equilibrium makes no allowance for 
the creation of new products or new 
arrangements, for the formation of 
new institutions, for exploring new strategies, 
for events triggering novel events, indeed, for 
history itself. All these have had to be 
discarded from the theory. “The steady 
advance of equilibrium theory throughout 
the twentieth century,” says David Simpson, 
“remorselessly obliterated all ideas that did not 
fit conveniently into its set of assumptions.”28 
Over the past 120 years, economists such 
as Thorstein Veblen1, Joseph Schumpeter7, 
Friedrich Hayek29, Joan Robinson5,30 and 
others4,31–35 have objected to the equilibrium 
framework, each for their own reasons.

All have thought a different economics 
was needed.

It was with this background in 1987 that 
the then-​new SFI convened a conference 
to bring together ten economic theorists 
and ten physical theorists to explore the 
economy as an evolving complex system. 
The meeting was a success and, a year later, 
these initial explorations became SFI’s 

first research programme8,36–38. I was asked 
to lead this programme, and, after many 
discussions, we realized that we kept coming 
back to the same question: what would 
economics look like if we went beyond the 
standard assumptions?

For one thing, agents differ39. Companies 
in a novel market may have different 
technologies, different motivations and 
different resources, and they may not know 
who their competitors will be or, indeed, 
how they will think. They are subject to what 
economists call fundamental uncertainty40. 
As John Maynard Keynes described this in 
1937, “the prospect of a European war… the 
rate of interest twenty years hence…. About 
these matters there is no scientific basis on 
which to form any calculable probability 
whatever. We simply do not know.”41  
As a result, the decision problem faced  
by agents is not logically defined and, so,  
it cannot have a logical solution. It follows 
that rational behaviour is not well-​defined. 
Therefore, there is no ‘optimal’ set of moves, 
no optimal behaviour. Faced with this — 
with fundamental uncertainty, ill-​defined 
problems and undefined rationality — 
standard economics understandably comes 
to a halt. It is not obvious how to get further.

The El Farol problem. And yet people do 
act in ill-​defined situations, and they do so 
routinely. As a concrete example, consider the 
El Farol bar problem42. One hundred agents 
attempt once a week on Thursday nights to 
forecast attendance at their favourite bar,  
El Farol in Santa Fe. If they believe the bar 
will be too crowded — will have more than 
60 people, say — they will not go; if they 
believe fewer than 60 will show up, they go. 
How will they act?

Deductive logic does not help. Agents’ 
predictions of how many will attend depend 

on their ideas of what others’ predictions 
will be, which depend, in turn, on their 
ideas of others’ predictions, and there is an 
infinite regress. Further, if a shared rational 
forecasting model did exist, it would quickly 
negate itself: if it predicted few will attend, 
all would go; if it predicted many will 
attend, nobody would go. Agents, therefore, 
face fundamental uncertainty: they do not 
know how other agents will decide on their 
forecasts, and, yet, such knowledge determines 
attendance. The problem is ill-​defined.

One can model this situation by assuming 
agents act inductively: each creates their own 
set of plausible hypotheses or predictors, 
and, every week, acts on their currently 
most accurate predictor. In other words, a 
framework for studying the economy should 
involve agents that form individual beliefs 
or hypotheses — internal models (possibly 
several simultaneously) — about how to 
respond to the situation they are in.

Such agents could be implemented as 
small, individual computer programs that 
could differ, explore and learn to get smart. 
How they could do this — how they could 
get smart — was inspired by the work of 
computer scientist John Holland, who 
had spent much of his career developing 
methods by which computer algorithms 
could learn to play checkers/draughts or 
chess. Holland’s algorithms could ‘recognize’ 
the current state of the game and learn to 
associate appropriate moves with it. The 
moves would be fairly random to start with 
and not very useful, but, over many games, 
the program would learn which moves 
worked in which situations, ‘explore’ new 
moves and drop ones that did not work — 
it would get smarter. In economic problems, 
agents could start with their own arbitrarily 
chosen or random beliefs, learn which ones 
worked and explore new ones occasionally, 
from time to time dropping ones that did 
not perform well and replacing them with 
new ones to try out42–44. They could, in this 
way, operate and explore in an ill-​defined 
setting and become more intelligent as they 
gained experience.

Notice two things about this framework. 
First, it is dynamic and open to new 
behaviours, often unthought of ones. The 
system may converge to an equilibrium in 
many cases, in others, it may not — it may 
perpetually discover novel behaviours. So, in 
general, we have a nonequilibrium economics. 
Second, the very explorations agents undertake 
alter their situation, which requires them to 
explore and adapt afresh, which changes the 
situation. We are in a world of complexity.

In the case of El Farol, computational 
experiments show (Fig. 1) that attendance in 
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Fig. 1 | Attendance at the El Farol bar in the first 100 weeks. Agents attend if they believe the total 
attendance that week will be no more than 60. Each creates their own set of plausible hypotheses or 
predictors of attendance, and, every week, acts on their currently most accurate one. Figure reprinted 
with permission from ref.12, AAAS.
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the bar (and the collection of forecasts being 
acted on) self-​organizes into an equilibrium 
pattern that hovers around the comfortable 
60 level. The reason is that, if fewer than 
60 came in the long term, low forecasts 
would be valid, so many would come, 
negating those forecasts; and if more came 
in the long run, fewer would show up. So an 
attraction to this level emerges. But, although 
the population of forecasts on average 
supports this comfortable level, the actual 
forecasts in use keep changing. The outcome 
is a bit like a forest, the shape of which  
does not change, but the individual trees 
of which do. Notice that equilibrium in 
this problem is not assumed, it emerges 
— self-​organizes — because it is a natural 
attractor.

Agents responding to ill-​defined situations. 
The El Farol problem was an early study 
using our Santa Fe approach, and others 
followed45. Inevitably, we were asked to name 
this approach, and, in a 1999 Science paper12, 
I labelled it ‘complexity economics’. At the 
heart of our approach were agents responding 
to ill-​defined situations by ‘making sense’ 
or recognizing some aspects of them, and 
choosing their actions, strategies or forecasts 
accordingly. Ways of modelling this have 
now widened significantly. Behavioural 
economics46 gives insights into how real 
human agents respond in the context we are 
looking at. Artificial intelligence or neural 
nets47 can be used to model how agents 
respond to the signals they are getting. 
Evolutionary programming can create novel 
unforeseen strategies (as in AlphaGo Zero). 
Modern psychology shows us how agents use 
narratives, imagination and calculations to 
make sense in ill-​defined circumstances48,49.

Some models in complexity economics 
use mathematics (such as nonlinear 
stochastic processes), but, often, the sheer 
complication of keeping track of the decision 
processes of multiple agents requires the 
use of computers. We then build models 
around agents’ individual behaviour, and, 
so, agent-​based modelling arises naturally50. 
Agent-​based models51–55 are now used all 
across economics. Some have a few hundred 
agents; a recent one has 120 million56. 
Some take account of legal and regulatory 
institutions. Some are designed to simulate 
reality — the 2008 subprime mortgage 
meltdown or the economics of the 2020 
COVID-19 pandemic. Some investigate 
theoretical issues — financial asset pricing. 
But whatever the design of these studies,  
the idea, as in all of economics, is to explore 
how outcomes follow from assumed 
behaviour.

An ecology of behaviours
In the El Farol problem, agents’ forecasting 
methods vie to be valid in a situation that  
is dependent on other agents’ forecasts — they 
compete in an ‘ecology’ of forecasts. Indeed, 
a general feature in complexity economics 
is that agents’ beliefs, strategies or actions 
are tested for survival within a situation or 
ecology that these beliefs, strategies or actions 
together create. They act in a way like species, 
continually competing or mutually adapting 
and co-​evolving. As a result, a distinct 
biological evolutionary theme emerges.

Here is an example. In a classic study57,  
a computerized tournament was constructed 
in which strategies compete in randomly 
chosen pairs to play a repeated prisoner’s 
dilemma game. (It is not necessary to 
understand the details of the prisoner’s 
dilemma; simply think of the experiment 
as a repeated game played one-​against-​one 
by a current collection of strategies.) Each 
strategy is a set of fixed instructions for how 
to act given its and its opponent strategy’s 
immediate past actions. If strategies perform 
well over many encounters, they replicate. 
If they do badly, they die and are removed. 
Every so often, existing strategies can 
mutate their instructions, and, occasionally, 
can deepen by having a lengthier memory 
of immediate past moves. At the start of 
the tournament, simple strategies such as 
tit-​for-​tat dominate, but, over time, more 
sophisticated ones show up that exploit them. 
In time, still more sophisticated strategies 
emerge to take advantage of these and 
the simpler ones drop out, and periods of 
relative stasis alternate with ones of dynamic 
upheaval (Fig. 2). One can think of each 
strategy type as a species, well-​defined and 
differing from other species, occasionally 
mutating to produce a new species. Evolution 
enters in a natural way that arises from 
strategies mutually competing for survival 
and mutating as they go.

Outcomes for the computerized 
tournament differ randomly each time 
it is run. In some runs, an evolutionarily 
stable strategy appears (one that cannot 
be invaded by some novel strategy). 
In other runs, the outcome keeps evolving 
indefinitely. In some runs, complicated 
strategies appear early on, in others, they 
appear only later. But, in spite of these 
variations, the experiment shows consistent 
phenomena: the exploitation of strategies 
by other strategies, emergence of mutual 
support among strategies, sudden collapses 
of strategies and takeover by novel ones, 
periods of stasis followed by ones of turbulent 
change. The overall scene looks like species 
competition in palaeozoological times.

Such outcomes are common with 
complexity in the economy. What constitutes 
a ‘solution’ — the outcome of the model — is 
frequently an ecology in which strategies, 
or actions, or forecasts compete; an ecology 
that might never settle down, and that shows 
properties that can be studied qualitatively 
and statistically.

This vision fits well with Alfred Marshall’s 
famous dictum in 1890 that “the Mecca of 
the economist lies in economic biology.”58

Simple models, complex phenomena
A new theoretical framework in a science 
does not really prove itself unless it explains 
phenomena that the accepted framework 
cannot. Can complexity economics make 
this claim? I believe it can.

Consider the Santa Fe artificial stock 
market model59,60.

The standard, neoclassical theory 
of financial markets61 assumes rational 
expectations: identical investors adopt 
identical forecasting models that are, on 
average, statistically validated by the prices 
they forecast. The theory works convincingly 
to explain how market prices come about 
and how they reflect the stream of random 
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Fig. 2 | Prevalence of strategies in a simulated tournament of the prisoner’s dilemma. Over time, 
strategies can evolve based on pressures exerted by other strategies. The lengths of labels indicate 
the memory depth of strategies, that is, how many previous moves in the game they take into account. 
Figure reprinted with permission from ref.139, Elsevier.
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earnings. But it has some key shortfalls:  
for one, in this theoretical market, no trade 
at all takes place. The reason is simple. 
Investors are identical, so if one of them 
wants to buy, all want to buy and there are 
no sellers; if one wants to sell, they all want 
to sell and there are no buyers; the stock 
price simply adjusts to reflect these realities. 
Further, the theory cannot account for actual 
market phenomena such as the emergence 
of a market psychology, price bubbles and 
crashes, the heavy use of technical trading 
(trades based on the recent history of price 
patterns)62 and random periods of high and 
low volatility (price variation).

At SFI, we created a different version of 
the standard model. We set up an ‘artificial’ 
stock market inside the computer and our 
‘investors’ were small, intelligent programs 
that could differ from one another. Rather 
than share a self-​fulfilling forecasting 
method, they were required to somehow 
learn or discover forecasts that work. We 
allowed our investors to randomly generate 
their own individual forecasting methods, 
try out promising ones, discard methods that 
did not work and periodically generate new 
methods to replace them. They made bids 
or offers for a stock based on their currently 
most accurate methods and the stock price 
forms from these — ultimately, from our 
investors’ collective forecasts. We included 
an adjustable rate-​of-​exploration parameter 
to govern how often our artificial investors 
could explore new methods.

When we ran this computer experiment, 
we found two regimes, or phases60. At low 
rates of investors trying out new forecasts, 
the market behaviour collapsed into the 
standard neoclassical equilibrium (in which 
forecasts converge to ones that yield price 
changes that, on average, validate those fore-
casts). Investors became alike and trading 
faded away. In this case, the neoclassical 
outcome holds, with a cloud of random 
variation around it. But if our investors try 
out new forecasting methods at a faster and 
more realistic rate, the system goes through a 
phase transition. The market develops a rich 
psychology of different beliefs that change 
and do not converge over time; a healthy 
volume of trade emerges; small price bubbles 
and temporary crashes appear; technical 
trading emerges; and random periods of  
volatile trading and quiescence emerge.

Phenomena we see in real markets emerge.
This last phenomenon of random periods 

of high and low volatility happens because, 
if some investors occasionally discover new 
profitable forecasting methods, they then 
invest more and this changes the market 
slightly, causing other investors to also 

change their forecasting methods and their 
bids and offers. Changes in forecasting 
beliefs thus ripple through the market in 
avalanches of all sizes, causing periods of 
high and low volatility.

I want to emphasize something here: 
such phenomena as random volatility, 
technical trading or bubbles and crashes are 
not ‘departures from rationality’. Outside 
of equilibrium, ‘rational’ behaviour is not 
well-​defined. These phenomena are the result 
of economic agents discovering behaviour 
that works temporarily in situations caused 
by other agents discovering behaviour that 
works temporarily. This is neither rational 
nor irrational, it merely emerges.

Other studies63–66 find similar regime 
transitions from equilibrium to complex 
behaviour in nonequilibrium models. 
It could be objected that the emergent 
phenomena we find are small in size: 
price outcomes in our artificial market 
diverge from the standard equilibrium 
outcomes by only 2% or 3%. But — and 
this is important — the interesting things 
in real markets happen not with equilibrium 
behaviour but with departures from 
equilibrium. In real markets, after all, 
that is where the money is made.

This remark above does not mean that 
complexity economics always makes small 
differences. It studies how solutions or 
structures form, and, often within these, 
qualitatively new phenomena or major 
differences emerge.

A word on agent-​based computation
The examples I’ve described contain enough 
complication with their differing agents’ 
behaviours that we need to use computation. 
This is normal. In fact, a closely related 
approach highlights computation and goes 
by the label agent-​based computational 
economics67–70 (Axtell, R. & Farmer, D., 
manuscript in preparation). It overlaps 
with the approach I am describing and is 
the subject of much current interest, so it 
is worth looking at the relation between 
the two. I would say this. In the 1980s, 
computation became available in simple 
but practical form, and it was computation 
more than anything else that allowed 
economic theorists to venture beyond the 
standard neoclassical assumptions — for 
instance, to allow complicated inductive 
reasoning and compute its consequences. 
If we turn these new possibilities into a 
theoretical framework, we get complexity 
economics, or something like it. If we 
turn them into a solution method, we get 
agent-​based computational economics. 
So there is no well-​marked boundary 

between the two approaches. One could, 
therefore, regard agent-​based computational 
economics as a key method within the 
framework of complexity economics; or 
one could regard complexity economics as a 
conceptual foundation behind agent-​based 
economic modelling. I should note that 
there are differences: complexity economics 
uses both mathematics and agent-based 
computation, and investigates patterns 
that endogenously form and change in the 
economy71. And agent-​based models often 
concern themselves with computational 
technicalities, and see themselves as stand- 
alone and not subject to any particular 
theoretical foundation. But granted these 
different emphases, the two approaches 
blend together. Depending on whether a 
study emphasizes theory or method, it can 
fly either flag — or both.

However they are labelled, computational 
studies are valuable: they offer agent-​based 
behavioural realism and they allow real-
istic detail; standard economics typically 
relates average aggregate quantities (outputs 
produced, say) to average aggregate quan-
tities (inputs used) and, often, the details 
within such aggregates matter. But, in spite 
of their advantages, in my experience, 
computation-​based models are still regarded 
with suspicion in mainstream economic 
journals — they are held to be ad hoc, open 
to using arbitrary assumptions or ones cho-
sen for preordained purposes. I agree there 
is plenty of scope for nefarious modelling, 
but, as has been pointed out, this is true in 
equation-​based modelling as well72. Rigour  
in a computational setting needs to widen from  
insistence on correctness of the logic (which, 
of course, remains imperative) to insistence 
on strict scientific honesty. It demands careful, 
verifiable modelling with realistic behaviour 
and reproducible, analysable results.

A different objection is that equation- 
based theory uses mathematics with all  
its majesty and power, and computation- 
based theory uses, well, computers. But the 
difference is superficial. Both methods trace a 
pathway from agent behaviour to its implied 
outcome. Equation-​based models allow one to 
follow the logical steps of this pathway — how 
the outcome is implied by the model — and 
computational models cannot do this. But 
they compensate in another direction. They 
are themselves largely collections of equations, 
and they have the capacity to be expanded to 
encompass an arbitrary amount of realistic 
detail. Furthermore, they allow if–then 
conditions. This means they can allow the 
changing context of the situation — the ‘if ’ 
clause of where the computation currently 
is — to direct agents’ behaviour in any way 
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appropriately called for73. This possibility is 
powerful and, once again, it connects with 
complexity: agents’ behaviour changes the 
context and the context changes behaviour. 
On both these counts, computation widens 
theory’s scope.

Events propagating in networks
Economic networks. Very often in a complex 
system, the actions taken by individual 
elements are channelled via a network74 
of connections among them. Within the 
economy, networks arise in many ways, such 
as trading, information transmission, social 
influence or lending and borrowing. Several 
aspects of networks are interesting: how their 
structure of interaction or topology makes 
a difference; how markets self-​organize 
within them75; how risk is transmitted; how 
events propagate; how they influence power 
structures76. It is not possible here to cover  
all themes of interest in network economics77.  
I will simply point out three features.

Propagation of change. The topology 
of a network matters as to whether 
connectedness enhances its stability or 
not78. Its density of connections matters, 
too. When a transmissible event happens 
somewhere in a sparsely connected network, 
the change will fairly soon die out for lack 
of onward transmission; if it happens in a 
densely connected network, the event will 
spread and continue to spread for long 
periods. So, if a network were to slowly 
increase in its degree of connection, the 
system will go from few, if any, consequences 
to many79, even to consequences that do  
not die out. It will undergo a phase change.  
This property is a familiar hallmark  
of complexity. Notice that the propagation of 
events brings time inexorably into systems; 
without such propagation, time disappears.

Power laws. Research on networks shows that 
cascades of events causing further events79 
often follow power laws (the frequency p  
of propagation lengths x follows p(x) ∼ x−a 
(a > 0)). And fluctuations related to 
cascading events often have long-​tailed 
probability distributions (roughly, large 
deviations have higher probability than they 
would under Gaussian distributions). Such 
features occur in all systems — physical, 
biological, geological — in which events 
propagate11, and they have been familiar in 
economics at least since the work of Vilfredo 
Pareto in the early 1900s. But, despite 
this, standard economics has traditionally 
assumed that firms, investors and economic 
events are unconnected and independent, 
therefore, the changes they cause deviate 

from some systemic average in a normal or 
Gaussian way. Accordingly, finance theory 
assumed normal fluctuations (as did the 
famous 1973 Black–Sholes formula for 
pricing options). This is now changing. 
Modern network theory shows that power 
laws and long tails are to be expected in the 
economy, and empirical studies of price 
fluctuations bear this out62,65,80. Such findings 
matter in finance. Contemporary financial 
derivatives markets trade trillions of dollars 
daily, and traders are forced to take account 
of such realities81.

Systemic risk. Networked events have 
consequences for overall risk in an industry. 
If firms are unconnected and independent, 
their ups and downs offset each other, so 
the possibility that a negative event at the 
level of one firm could trigger collapse 
of the industry or economy — called its 
systemic risk — is relatively low. But when 
companies are connected in networks of 
financial dependence, this changes82. Banks 
borrow from or lend to other ‘counterparty’ 
banks in their immediate network. If an 
individual bank discovers it holds distressed 
assets — counterparty loans that will not be 
repaid — it comes under pressure to increase 
its liquidity and call in its loans from its 
counterparty banks. These, in turn, come 
under pressure to call in their counterparty 
loans, and distress can cascade across the 
network83. The overall system can then 
become threatened or collapse, which is what 

happened in 2008. It has been proposed84 
that loans by banks to other individual banks 
be taxed according to the change in systemic 
risk they cause, which forces the system to 
self-​organize in a way that minimizes risk.

Policy
Does complexity economics lead to 
different policies than the ones neoclassical 
economics advocates? I believe so. 
In equilibrium economics, policy 
typically means adjusting some means of 
incentive — taxes, regulations, quotas — 
to gain a desired outcome. Certainly, this 
approach can be effective, though in cases 
in which policy is guided by theory based 
on assumptions adopted for analytical 
convenience or ideology, it may be dubious. 
With complexity models85, one can bring in 
much-​needed realism86,87: agents may differ, 
in region or class or response; their attitudes 
can change endogenously88; the details of 
institutions can be built in; and fundamental 
uncertainty and unseen disturbances can 
be allowed for. The implications of policy 
can be explored in ways that go beyond 
narrow economic ‘efficiency’. One can set up 
policy labs — carefully controlled computer 
experiments — to test policy designs and 
game out their consequences. All these are 
refinements of policy.

But one can go further. Dropping the 
equilibrium assumption reveals an economy 
that is open to new behaviour, even to being 
exploited or gamed by small groups of  

Box 1 | All systems will be gamed

Standard economics has learned how to stabilize macroeconomic outcomes, avoid depressions, 
regulate currency systems, manage central banking and carry out antitrust policy. What it has not 
been able to do is prevent financial and economic crises.
Financial crises happen when small events trigger a cascade of further events that get out of 

control, or when a small group of players gains control of some part of the system140,141 to its own 
private advantage but to the detriment of the system as a whole. Thus, in Russia’s 1990s transition 
from communism to capitalism, a coterie of private players took control of the state’s newly freed 
assets for their own benefit and industrial production plummeted142,143. In California’s 2000 freeing 
of its energy market, a small number of suppliers manipulated the market to their own profit and 
the state’s finances suffered144. In the USA’s mortgage-​backed securities market in 2008, financial 
institutions on Wall Street had obtained looser regulations and created exotic derivative products 
they greatly benefited from, which caused an unstable structure that spectacularly collapsed143,145. 
Each of these systems was manipulated or ‘gamed’, and all broke down.
The consequences of economic collapse are serious. So why does equilibrium economics not 

warn us of these potential failures in advance? The reason is subtle: equilibrium economics is 
not primed to look for such possibilities. If we assume a system is in stasis or equilibrium, then, 	
by definition, cascades of hazardous events and their consequences cannot happen, and, also by 
definition, players cannot find ways to manipulate the situation and improve their position. And 	
so, a muted bias precludes the idea of collapse. Complexity, by contrast, sees the economy as a 
web of incentives open to further actions or to exploitation, so it disposes us to examine economic 
systems for where they might be open to manipulation or to systemic failure.
Can we program computers to probe for weaknesses? I believe we can. We can model large 

policy systems and probe them, deliberately or automatically, to see where they might be 
exploited. We need to adopt such failure-​mode practices from structural engineering, or aircraft 
design146, or encryption, and examine where economic systems have weak points and might be 
manipulated. Doing so would yield more reliable economic and social outcomes.
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players (Box 1), and one can formulate ways to 
prevent this. And dropping the coarseness of 
models that implicitly assume average agents 
makes it possible to look at distributional 
issues, that is, at different agents being 
affected differently by policies (discussed 
below). Complexity widens the policy arena.

Some frontiers
It is now more than 30 years since our 
discussions of complexity economics 
started at SFI, and many of its ideas are 
being absorbed into the core of economics. 
But the new approach is not yet fully 
central. I believe this is to be expected. 
For any field to change at a fundamental 
level, its textbooks, teaching, journal 
editors and highly trained practitioners 
must themselves change. Indeed, game 
theory and behavioural economics each 
took 40–50 years to be absorbed into the 
core of economics (Axtell, R. & Farmer, D., 
manuscript in preparation).

By that measure, complexity economics 
is still arriving. There are now general texts 
on the subject89–96 and research across sub-
fields such as macroeconomics97–99, labour 
economics100,101, institutional economics102, 
environmental economics103–106, finance107–109, 
economics of disease transmission110,111, 
distribution of firms’ sizes112, scaling 
laws113,114, ergodicity in economics115, tech-
nological innovation116–118 and economic 

development119. If there are trends, they 
are towards more behavioural realism, 
grounding models on large data sets120, using 
computer experiments to study and design 
systems, and understanding how macro  
patterns emerge from micro assumptions.

Here are some frontiers I find interesting.

Formation in the economy. Neoclassical 
economics examines equilibrium patterns 
in the economy: patterns of production, 
consumption, prices and of quantitative 
growth in these entities. It cannot readily 
look at questions of formation — how 
the arrangements and institutions of the 
economy come to be in the first place and 
how the economy changes in character over 
time. Complexity economics, by contrast, 
sees the economy as open and subject 
to novelty, and it can explore formation 
naturally (Box 2). It also assumes there 
may be positive feedbacks (or increasing 
returns) in the economy; these act to amplify 
small differences in history and can lead 
to the lock-​in of giant firms, especially 
in the technology sector (Box 3). And 
because complexity economics looks at 
how structures form or solutions come to 
be ‘selected’, it connects robustly with the 
dynamics of evolutionary economics.

Complexity also links with 
pre-​neoclassical approaches in economics — 
political economy, classical economics and 

Austrian economics. These are venerable 
traditions with different emphases, but, 
together, they see historical contingency 
as important, economic structures as 
perpetually in formation and the economy 
as rich in process. Because they emphasize 
process and qualitative formation, they 
were not easily mathematized, and, in 
the twentieth century, became sidelined 
by equilibrium theory. Complexity is 
connecting with these earlier approaches 
and giving them new voice14,28,31,121,122.

Econophysics. Since the 1990s, physicists 
have been applying physics models and 
methods to economics, especially within 
finance123. This new field is growing rapidly, 
and, although it does not quite overlap 
with complexity economics, it is worth 
mentioning here because it is physics-​based. 
Studies vary, but the tendency, as in other 
branches of physics and engineering, is to 
explore large real data sets and seek simple 
mechanisms within these. Sometimes, this 
has had marked success124,125.

Distributional issues. Neoclassical 
economics concerns itself greatly with 
growth and efficiency — the what’s-​
produced of the economy — and much  
less with distributional issues — the who- 
gets-​what of the economy. One reason 
for this is that, for analytical convenience, 
standard economics often models issues at a 
coarse-​grained level, say at the country level, 
so that individual regions or groupings of 
people become unseen or averaged away126 —  
the models are mean-​field. Then, how these 
unseen individual agents or groupings 
will fare under a new policy is unspecified 
and it’s easy to assume by default that they 
will benefit equally. In models that allow 
explicitly diverse agents, as with complexity 
economics, this ceases to be the case: some 
may benefit, some may lose. In the early 
1990s, standard economic doctrine taught 
that free trade and globalization were, in 
most circumstances, beneficial127. Offshoring 
from the USA to locations such as Mexico 
or China would, therefore, be advantageous: 
Mexico and China would get new industry 
and jobs and the USA would get cheaper 
goods. Such arrangements would, indeed, 
have been socially optimal if all parts of a 
given country or territory were the same; 
they would all benefit equally. But, in 
practice, regional differences, especially in 
the USA, mattered. Many economists now 
believe that offshoring of the US economy 
to China and Mexico was a major factor in 
hollowing out jobs in regions such as the 
US Rust Belt128, which has brought grim 

Box 2 | The economy creating itself from itself

Where does an economy come from? How does it form itself and change structurally? We are 
asking how the economy changes in character from canals to railroads or from electronics to 
algorithms. Economists have long been aware that economies form largely around their means 	
of production (their technologies): industrial processes, machinery, business procedures, 
transportation methods. And they change structurally as these change. Equilibrium economics 
acknowledges this but handles it simplistically. Certain technologies exist; certain new ones are 
somehow invented; production changes, prices change, the equilibrium shifts.
Complexity economics offers a richer story (I will condense it here)116. It starts with the 

observation that technologies are means to human purposes and are constructed, put together — 
combined — from parts, assemblies, sub-​assemblies116,147,148. These latter are also means to 
purposes; thus, new technologies form by combination from existing technologies (albeit with 
much human ingenuity)116. But things do not stop there. A new technology sets in motion a 
sequence of events — an ‘algorithm’, if you like. When a new technology appears, it replaces 
existing technologies; calls forth new ones to satisfy its needs; becomes a component available 
for the creation of further new technologies; and causes the economy, society and their institutions 
to rearrange themselves149. Thus, when the railway locomotive entered the economy, it replaced 
existing horse-​drawn trains; set up needs for the fabrication of iron rails and the organization of 
railways; caused the canal and horse-​drayage industries to wither; became a key component in the 
transportation of goods; and, in time, caused factories to relocate and towns to grow. The economy 
transformed itself structurally.
Once set in motion, this sequence of events need not stop. By calling forth new technologies and 

becoming a component for further technologies, a technology may cause further technologies to 
be added. These, in turn, bring forth the same sequence and, with this, a cascade of further events. 
The algorithm may be simple but it ‘calls itself’ within itself, and, in doing so, brings forth rich-	
patterned change. It does this at all levels and concurrently, causing continuous, unstopping 
disruption. The economy, in turn, forms from its technologies, which call for and contribute to the 
creation of further technologies and, thereby, the economy’s further formation. The economy, thus, 
continually creates itself from itself.
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consequences to social wellbeing129 and US 
politics ever since. Models with agents with 
realistic, regionally diverse circumstances 
would have foreseen this outcome, and 
they open a new capacity to explore 
distributional issues.

More realistic modelling. As discussed 
above, complexity economics and agent-​
based computation allow for more realistic 
modelling across economics and related 
fields. For example, standard, mean-​field, 
infectious-​disease-​transmission models 
assume that the average infected person, 
on average, infects R0 further people. With 
agent-​based modelling, one can break out 
the transmission process, assume diverse 
agents with diverse circumstances and follow 
the event-​by-​event transmission process 
realistically. More precise detail allows 
sharper resolution and one sees features 
that would not be visible otherwise110.

Industry applications. Industry applications 
are still at a beginning. Complexity 
thinking and agent-​based computational 
experiments help where sequences of 
events and responses to them matter, as 
occurs in transportation logistics130 or in 
citywide traffic management131. It also helps 
where fundamental uncertainty exists, as 
in planning future operations in the face of 
unforeseen financial crises, possible wars, 
epidemics, power outages, abrupt changes 
in regulation or unexpected actions by 
competitors. In such cases, optimization 
may not be appropriate — indeed, it may 
not be well-​defined. A better approach 
would allow for a multiplicity of candidate 
responses by computerized ‘agents’ and 
use complexity methods such as genetic 
algorithms or evolutionary programming 
to ‘learn’ and select appropriate responses to 
given circumstances. In this way, ‘intelligent’ 
behaviour self-​organizes, as with the 
complexity models I described earlier. What 
is important in industry is not just efficiency 
but robustness and resilience — the ability 
to react to unforeseen circumstances and to 
recover or transform quickly if something 
goes wrong. This way of thinking brings 
a different approach not just to business 
operations but to management itself. It calls 
for adaptive, resilient and organic thinking, 
rather than deterministic, top-​down, 
mechanistic control132.

The autonomous economy. In the 1960s, 
the character of the economy in the USA 
and Europe was heavily determined by 
large industrial organizations that produced 
goods and services. In the 1990s, this 

changed, and production was sizably 
offshored. Now, under rapid digitization, 
the economy’s character is changing again 
and parts of it are becoming autonomous133 
or self-​governing. Financial trading 
systems, logistical systems and online 
services are already largely autonomous: 
they may have overall human supervision, 
but their moment-​to-​moment actions 
are automatic, with no central controller. 
Similarly, the electricity grid is becoming 
autonomous (loading in one region can 
automatically self-​adjust in response to 
loading in neighbouring ones134); air-traffic 
control systems are becoming autonomous 
and independent of human control135; and  
future driverless-​traffic systems, in 
which driverless-​traffic flows respond to 
other driverless-​traffic flows, will likely be 
autonomous. Such systems have much in 
common with the operational systems I just 
described. Besides being autonomous, they 
are self-​organizing, self-​configuring, self-​
healing and self-​correcting, so they show a 
form of artificial intelligence. One can think 
of these autonomous systems as miniature 
economies, highly interconnected and 
highly interactive, in which the agents are 
software elements ‘in conversation with’ and 
constantly reacting to the actions of other 
software elements. A blockchain system 
(a secure, decentralized, highly autonomous 
digital ledger) is conversationally interactive 

in this way. Indeed, as the economy digitizes, 
it is increasingly made up of autonomous 
conversing systems. It becomes ever more 
an evolving, complex system.

An overall perspective
In the end, what is my view on this new 
approach to economics? Here is a brief 
summary.

Complexity economics relaxes the 
assumptions of neoclassical economics —  
the assumptions of representative, 
hyper-​rational agents, each of which 
faces a well-​defined problem and arrives 
at optimal behaviour given this problem 
(Table 1) — and, thus, gives a different style 
to economics. It is an economics in which 
the agents in the economy are realistically 
human and realistically diverse, in which 
path-​dependence and history matter, 
in which events trigger events136 and in 
which the networks that channel these 
events matter. It is an economics in which 
equilibrium is not assumed, if it is present,  
it emerges; in which rational behaviour is not 
assumed, in general, it is not well-​defined;  
in which the unexpected crises of the 
economy can be probed and planned for 
in advance; in which free markets are not 
assumed to be optimal for society but 
can be assessed realistically; and in which 
distributional issues are not covered up, 
but can be rigorously scrutinized.

Box 3 | Silicon Valley economics

One early theme in complexity economics has been the effects of positive feedbacks. Traditionally, 
standard economics has assumed negative feedbacks (or diminishing returns). There are only so 
many good hydroelectric sites in Sweden and, once these are used up, hydro energy runs into 
diminishing returns — it becomes more costly. Thus, hydro-​based and petroleum-​based energy 
share the market in an efficient and predictable way.
But some economic markets — particularly tech ones — show positive feedbacks (increasing 

returns). If one company or technology gets ahead, it accrues network effects (if more people I deal 
with are on PayPal’s payment system, it increases my advantage to adopt PayPal), or it can lower 
costs by spreading its upfront R&D expenses over a wider user base; it, therefore, reaps further 
advantage. When several such companies compete, one that gets ahead by good fortune or clever 
strategy may come to dominate or lock in the market. But the winner need not be the best.
Economists have long known about increasing returns. Alfred Marshall in 1890 speculated that, 	

if N firms competed and each had increasing returns, the market would go to “whatever firm first 
gets a good start.”58 But in static equilibrium economics, this causes a problem: if multiple 
equilibria are possible, we cannot say which one might occur. The outcome is indeterminate.
Complexity economics resolves this indeterminacy150 by allowing such situations to play out over 

time. ‘Small random events’ occur — what product launches when, who sat next to whom on an 
airplane, what design caught the early imagination — and, over time, increasing returns magnifies 
the cumulation of such events to ‘select’ the outcome randomly. Thus, increasing returns problems 
in economics are best seen as dynamic processes with random events and natural positive 
feedbacks — as nonlinear stochastic processes151. They may yield different outcomes in different 
realizations.
Such properties of multiple equilibria, non-​predictability, lock-​in, inefficiency, historical path 

dependence and asymmetry in economics are similar to phenomena in physics: multiple 
metastable states, unpredictability, phase-​locking or mode-​locking, high-​energy ground states, 
non-​ergodicity and symmetry breaking.
Increasing returns have become the basis for our understanding not just of tech markets152 but of 

economic geography153, international trade154, patterns of inequality155,156 and segregation157.
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Because its assumptions are a widening of 
the neoclassical ones, complexity economics 
is neither a special case of equilibrium 
economics nor an addition to it137. On the 
contrary, it is economics done in a more 
general way. This broadening of principles 
is not due to a shift in ideology. It is due, 
I believe, to new tools becoming available to 
economics: methods to think about decision 
making under fundamental uncertainty 
and to deal with nonlinear dynamics and 
nonlinear stochastic processes. Above 
all, it is due to computation138, which 
makes it possible to model arbitrarily more 
complicated and more realistic behaviour.

It would be naive to say that this 
widening of scope will be a panacea 
for economics, but it certainly releases 
economics from the strictures of its 
neoclassical assumptions. I see this shift in 
economics as part of a larger shift in science 
itself. All the sciences are shedding their 
certainties, embracing openness and process, 
and asking how structures or phenomena 
come into being. There is no reason that 
economics should differ in this regard. 
Complexity economics sees the economy not 
as mechanistic, static, timeless and perfect 
but as organic, always creating itself, alive 
and full of messy vitality.
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